Access to Science - Mathematics 1 ADEDEX424 Semester 1 2014-2015 Exam Solutions

- (iii) (a) 17.950 = 18.0 to one decimal place.
 - (b) 1234567 = 1235000 to four significant figures.
 - (c) 0.000123 = 0.0001 to one significant figure.
 - (d) $13214.53 = 1.321453 \times 10^4$ in scientific notation.
 - (e) $0.00235 = 2.4 \times 10^{-3}$ in scientific notation to two significant figures. [5]

(iv)
$$(x^4 - 2x^3 + 2x - 2) - (x^5 - 2x^4 + 3x^3 - x^2 - 4)$$

= $-x^5 + (x^4 + 2x^4) + (-2x^3 - 3x^3) + x^2 + 2x + (-2 + 4)$
= $-x^5 + 3x^4 - 5x^3 + x^2 + 2x + 2.$ [2]

$$(x^{3} - 2x)(2x^{2} + 3) = (x^{3})(2x^{2} + 3) + (-2x)(2x^{2} + 3)$$

= $(x^{3})(2x^{2}) + (x^{3})(3) + (-2x)(2x^{2}) + (-2x)(3)$
= $2x^{3+2} + 3x^{3} - 4x^{1+2} - 6x$
= $2x^{5} + 3x^{3} - 4x^{3} - 6x$
= $2x^{5} - x^{3} - 6x$.

ſ	2	1
- L		ч

(vi)
$$7\overline{)12766}$$

 7000
 5766
 5600
 166
 140
 26
 21
 5
So $\frac{12766}{7} = 1823 + \frac{5}{7}$.
That is the quotient is 1823 and the remainder is 5. [3]
(vii) $x+1)\overline{x^2 - x + 2}$
 $-\frac{x^2 - x}{-2x + 2}$
 $-\frac{2x + 2}{4}$
This tells us that $\frac{x^2 - x + 2}{x + 1} = x - 2 + \frac{4}{x + 1}$.

So the quotient is
$$x - 2$$
 and the remainder is 4. [4]

(viii)
$$\sum_{i=-2}^{2} i^4 = (-2)^4 + (-1)^4 + 0^4 + 1^4 + 2^4 = 16 + 1 + 0 + 1 + 16 = 34.$$
 [2]

(ix)
$$\binom{9}{3} = \frac{9 \times 8 \times 7}{3 \times 2} = 84.$$
 [2]

 (\mathbf{x})

2.

$$(x - 3y)^{3} = x^{3} + {\binom{3}{1}}x^{2}(-3y) + {\binom{3}{2}}x(-3y)^{2} + (-3y)^{3}$$

= $x^{3} - 9x^{2}y + 27xy^{2} - 27y^{3}.$ [4]

(i) The slope of the line is $m = \frac{3-5}{2-(-2)} = \frac{-2}{4} = -\frac{1}{2}$. Thus the equation of the line is $y = -\frac{1}{2}x + c$, where we still have to find c. If we substitute x = -2 and y = 5 into $y = -\frac{1}{2}x + c$, we obtain $5 = -\frac{1}{2}(-2) + c$. Thus $c = 5 + \frac{1}{2}(-2) = 5 - 1 = 4$. Hence the equation of the line is $y = -\frac{1}{2}x + 4$. [3]

- (ii) Here our line is parallel to a line that has slope -3, so our line also has slope m = -3. Hence the equation of the line is y = -3x + c, where we still have to find c. On substituting x = 2 and y = -3 into y = -3x + c, we obtain -3 = -3(2) + c, so that c = -3 + 3(2) = 3. Hence the equation of the line is y = -3x + 3. [2]
- (iii) If we subtract two times the second equation from three times the first we obtain

$$6x + -9y = -21 - 6x + -4y = -6 -5y = -15$$

Hence y = 3 and on substituting this into the first equation we get 2x = 3y - 7 = 9 - 7 = 2, so that x = 1. Thus the solution is x = 1 and y = 3.

(iv) Using $(x_1, y_1) = (-1, 2)$ and $(x_2, y_2) = (2, -1)$, the formula tells us that the length of the line segment is

$$\sqrt{(2 - (-1))^2 + (-1 - 2)^2} = \sqrt{3^2 + (-3)^2} = \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2}.$$
[1]

(v) If we let $(x_1, y_1) = (2, -3)$ and $(x_2, y_2) = (4, 0)$, then using the formula, we have that the midpoint is

$$\left(\frac{2+4}{2}, \frac{-3+0}{2}\right) = \left(3, -\frac{3}{2}\right).$$
 [1]

[3]

3. (i)

$$2x^{2} - x - 10 = 2\left\{x^{2} - \frac{1}{2}x - 5\right\}$$
$$= 2\left\{\left(x - \frac{1}{4}\right)^{2} - \frac{1}{16} - 5\right\}$$
$$= 2\left\{\left(x - \frac{1}{4}\right)^{2} - \frac{81}{16}\right\}$$
$$= 2\left(x - \frac{1}{4}\right)^{2} - \frac{81}{8}.$$

[3]

(ii) Using the completed square form found in Part (i):

$$2x^{2} - x - 10 = 0 \Rightarrow 2\left(x - \frac{1}{4}\right)^{2} - \frac{81}{8} = 0$$
$$\Rightarrow 2\left(x - \frac{1}{4}\right)^{2} = \frac{81}{8}$$
$$\Rightarrow \left(x - \frac{1}{4}\right)^{2} = \frac{81}{16}$$
$$\Rightarrow x - \frac{1}{4} = \pm \frac{9}{4}$$
$$\Rightarrow x = -2 \text{ or } x = \frac{5}{2}.$$

[3]	
	-

[2]

(iii) In this case a = 2, b = -1 and c = -10. Hence the solutions of the equation are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

= $\frac{-(-1) \pm \sqrt{(-1)^2 - 4(2)(-10)}}{2(2)}$
= $\frac{1 \pm \sqrt{1 + 80}}{4}$
= $\frac{1 \pm \sqrt{81}}{4}$
= $\frac{1 \pm 9}{4}$
= $-2 \text{ or } \frac{5}{2}$,

confirming the answer to Part (ii).

(iv) From Part (i) we know that the graph cuts the x-axis when x = -2 and when $x = \frac{5}{2}$. Next, when x = 0, y = -10, so the graph cuts the y-axis when y = -10. We also know the graph is U-shaped since a > 0. Finally, the turning point is given by

$$\left(-\frac{b}{2a}, -\frac{b^2 - 4ac}{4a}\right) = \left(-\frac{-1}{2(2)}, -\frac{(-1)^2 - 4(2)(-10)}{4(2)}\right) = \left(\frac{1}{4}, -\frac{81}{8}\right)$$

We now have all the information we need and I have sketched the graph in Figure 1.

Figure 1: The Graph of the function $y = 2x^2 - x - 10$.

[4]

(v)
$$2x^2 - x - 10 = 2(x - (-2))\left(x - \frac{5}{2}\right) = (x + 2)(2x - 5).$$
 [2]

- 4. (i) (a) This is not a function. For example, f(0) is not defined, since 2 does not lie in the codomain.
 - (b) This is a function. Its domain is \mathbb{R}^- and its codomain is \mathbb{R}^+ .
 - (c) This is not a function. For example, f(0) is not defined, since 1 does not lie in the codomain. [6]
 - (ii) (a) Figure 2 shows the graph of the function

$$f: \{-3, -2, 0, 2, 3\} \rightarrow \{1, 2, 3\}$$
$$-3 \mapsto 3$$
$$-2 \mapsto 2$$
$$0 \mapsto 1$$
$$2 \mapsto 2$$
$$3 \mapsto 3$$

(b) Figure 3 shows the graph of the function

$$f: \{x \in \mathbb{R}: -3 \le x \le 2\} \to \{x \in \mathbb{R}: -10 \le x \le 10\}$$
$$x \mapsto 2x - 3$$

Figure 2: The graph of the function defined in Question 4(ii)(a).

Figure 3: The graph of the function defined in Question 4(ii)(b).

[4]

(iii) The functions h and k both cross the x-axis so these must be the log functions. The function k increases as x increases, so k is the function in (d). Then the function h must be the function in (e). Next g lies below the x-axis, so it must be one of (a) or (c). Now $y = 7^x$ increases as x increases, so $y = -7^x$ decreases as x increases. Hence g can't be (a) and so must be (c). Finally l must be (b) or (f). However $y = \left(\frac{5}{7}\right)^x$ decreases as x increases, so it can't be l. Thus l must be (f). Summarizing: g is (c), h is (e), k is (d) and l is (f). [4]

(iv) (a) This function is injective.

It is not surjective since there is no x with f(x) = 5. It is not bijective since it is not surjective.

- (b) This function is injective, surjective and hence bijective.
- (c) This function is injective. It is not surjective since there is no x with f(x) = 0. It is not bijective since it is not surjective.
- (v) The inverse function of the function in Question 4(iv)(b) is:

$$f^{-1}: \{1, 2, 3, 4\} \to \{A, B, C, D\}$$
$$1 \mapsto C$$
$$2 \mapsto D$$
$$3 \mapsto B$$
$$4 \mapsto A$$

[2]

[5]

5. (i)
$$345^{\circ} = 345 \times \frac{\pi}{180} = \frac{23\pi}{12}$$
 Radians. [1]

(ii)
$$\frac{5\pi}{12}$$
 Radians = $\left(\frac{5\pi}{12} \times \frac{180}{\pi}\right)^{\circ} = 75^{\circ}$. [1]

(iii) In this case we want to find $\sin(\theta)$ when $\theta = \frac{5\pi}{4}$.

Looking at Figure 4, we see that we need to find y, since this is by definition $\sin\left(\frac{5\pi}{4}\right)$. Now, also from Figure 4, $\phi = \frac{5\pi}{4} - \pi = \frac{\pi}{4}$ (where we are just treating ϕ as an angle rather than a directed angle). Hence, using the table of common

values, $\sin(\phi) = \frac{1}{\sqrt{2}}$. But also by definition $\sin(\phi) = |y|$ (since the hypotenuse has length 1). Now, since y is negative, y = -|y| and so $\sin\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}}$. [3]

- (iv) (a) Here we will first use sin(θ) = cos (π/2 − θ). We have sin (2π/3) = cos (π/2 − 2π/3) = cos (-π/6). Next we will use cos(−θ) = cos(θ) and our table of common values to obtain cos (-π/6) = cos (π/6) = √3/2. Hence sin (2π/3) = √3/2.
 (b) We will first use the fact that the cosine function repeats every 2π.
 - b) We will first use the fact that the cosine function repeats every 2π . Thus $\cos\left(\frac{5\pi}{3}\right) = \cos\left(\frac{5\pi}{3} - 2\pi\right) = \cos\left(-\frac{\pi}{3}\right)$. We can now use our table of common values and $\cos(-\theta) = \cos(\theta)$ to obtain $\cos\left(-\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$. Hence $\cos\left(\frac{5\pi}{3}\right) = \frac{1}{2}$. $\tan(4) = \tan(B)$
 - (c) Here we will use $\tan(A B) = \frac{\tan(A) \tan(B)}{1 + \tan(A)\tan(B)}$ with $A = \frac{\pi}{4}$ and $B = \frac{\pi}{3}$. Hence

$$\tan\left(-\frac{\pi}{12}\right) = \frac{\tan\left(\frac{\pi}{4}\right) - \tan\left(\frac{\pi}{3}\right)}{1 + \tan\left(\frac{\pi}{4}\right)\tan\left(\frac{\pi}{3}\right)} = \frac{1 - \sqrt{3}}{1 + (1)(\sqrt{3})} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}}.$$

[3]

- (v) Using the cosine in the form $a^2 = b^2 + c^2 2bc\cos(A)$ we obtain $a^2 = 8^2 + 10^2 2(8)(10)\cos(71^\circ) \simeq 111.91.$ Hence $a \simeq \sqrt{111.91} \simeq 10.58.$
- **6.** (i)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{(x+h)^2 + 1 - (x^2 + 1)}{h}$
= $\lim_{h \to 0} \frac{(x^2 + 2xh + h^2) + 1 - (x^2 + 1)}{h}$
= $\lim_{h \to 0} \frac{x^2 + 2xh + h^2 + 1 - x^2 - 1}{h}$
= $\lim_{h \to 0} \frac{2xh + h^2}{h}$
= $\lim_{h \to 0} 2x + h$
= $2x$.

[3]

(ii) (a)
$$f'(x) = 0$$
.
(b) $f'(x) = 0$.
(c) $f'(x) = 4x^3$.
(d) $f'(x) = \frac{1}{x}$.
(e) $f'(x) = -3\cos(-3x)$.
(f) $f'(x) = 0 - 4(-2x^{-2-1}) + 2\left(\frac{4}{5}x^{\frac{4}{5}-1}\right) = 8x^{-3} + \frac{8}{5}x^{-\frac{1}{5}}$.
(g) $f'(x) = 3(-2\sin(2x)) - 4(-\cos(-x)) = -6\sin(2x) + 4\cos(-x)$.
(h) $f'(x) = 0 + 4(-5e^{-5x}) + 4\left(\frac{1}{x}\right) = -20e^{-5x} + \frac{4}{x}$.
[11]

7. (i)
$$\int 6 \, dx = 6x + c.$$
 [1]

(ii)
$$\int_{1}^{2} x^{7} dx = \left[\frac{1}{8}x^{8}\right]_{1}^{2} = \frac{1}{8}(2^{8}) - \frac{1}{8}(1^{8}) = \frac{255}{8}.$$
 [2]

(iii)
$$\int \cos(4x) \, dx = \frac{1}{4} \sin(4x) + c.$$
 [1]
(iv)

$$\int_{0}^{\frac{\pi}{2}} \sin(-3x) \, dx = \left[\frac{1}{-3}(-\cos(-3x))\right]_{0}^{\frac{\pi}{2}}$$
$$= \left[\frac{1}{3}(\cos(-3x))\right]_{0}^{\frac{\pi}{2}}$$
$$= \frac{1}{3}\cos\left(-\frac{3\pi}{2}\right) - \frac{1}{3}\cos(0)$$
$$= 0 - \frac{1}{3}$$
$$= -\frac{1}{3}.$$
[3]

(v)

$$\int 2 - 3x^2 + 2x^{\frac{3}{4}} dx = 2x - 3\left(\frac{1}{3}\right)x^3 + 2\left(\frac{1}{7/4}\right)x^{\frac{7}{4}} + c$$
$$= 2x - x^3 + \frac{8}{7}x^{\frac{7}{4}} + c.$$
[2]

(vi)

$$\int_{1}^{2} 5 - 3e^{-5x} dx = \left[5x - 3\frac{1}{-5}e^{-5x} \right]_{1}^{2}$$
$$= \left[5x + \frac{3}{5}e^{-5x} \right]_{1}^{2}$$
$$= 10 + \frac{3}{5}e^{-10} - \left(5 + \frac{3}{5}e^{-5} \right)$$
$$= 5 + \frac{3}{5} \left(e^{-10} - e^{-5} \right).$$

[3]

8. (i) (a) The mean is

$$\overline{x} = \frac{1}{10}(3+2+(-8)+(-4)+8+3+2+5+(-7)+(-5))$$
$$= \frac{-1}{10}$$
$$= -\frac{1}{10}.$$

- (b) The list in ascending order is -8, -7, -5, -4, 2, 2, 3, 3, 5, 8. Since there are ten numbers (an even number), the median is $m = \frac{x_{\frac{10}{2}} + x_{\frac{10}{2}+1}}{2} = \frac{x_5 + x_6}{2} = \frac{2+2}{2} = 2.$
- (c) There are 2 twos, 2 threes and one of each of the other numbers, so there are two modes, 2 and 3.
- (d) The variance is (where I have used the original ordering)

$$\begin{aligned} \operatorname{Var}(x) &= \frac{\sum_{i=1}^{10} (x_i - \overline{x})^2}{10} \\ &= \frac{\left(3 - \left(-\frac{1}{10}\right)\right)^2 + \left(2 - \left(-\frac{1}{10}\right)\right)^2 + \left(-8 - \left(-\frac{1}{10}\right)\right)^2}{10} \\ &+ \frac{\left(-4 - \left(-\frac{1}{10}\right)\right)^2 + \left(8 - \left(-\frac{1}{10}\right)\right)^2 + \left(3 - \left(-\frac{1}{10}\right)\right)^2}{10} \\ &+ \frac{\left(2 - \left(-\frac{1}{10}\right)\right)^2 + \left(5 - \left(-\frac{1}{10}\right)\right)^2 + \left(-7 - \left(-\frac{1}{10}\right)\right)^2}{10} \\ &+ \frac{\left(-5 - \left(-\frac{1}{10}\right)\right)^2}{10} \\ &= \frac{2689/10}{10} \\ &= \frac{2689}{100} \\ &= 26.89. \end{aligned}$$

- (e) The standard deviation is $\sigma = \sqrt{\operatorname{Var}(x)} = \sqrt{\frac{2689}{100}} \simeq 5.186.$
- (f) Since there are ten numbers (an even number) we just split the numbers into a lower half -8, -7, -5, -4, 2 and an upper half 2, 3, 3, 5, 8. There are five numbers in each of these new groups (an odd number), so in each case the median is x⁵⁺¹/₂ = x₃. Hence the lower quartile is Q₁ = -5 and the upper quartile is Q₃ = 3. Thus the interquartile range is Q₃ Q₁ = 3 (-5) = 8. [8]
- (ii) There are seven points, so n = 7 and

$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{7} x_i = -4 + (-2) + 0 + 1 + 2 + 5 + 6 = 8$$
$$\sum_{i=1}^{n} y_i = \sum_{i=1}^{7} y_i = -1 + 0 + 0 + 1 + 2 + 3 + 4 = 9$$

$$\sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{7} x_i y_i$$

=(-4)(-1) + (-2)(0) + (0)(0) + (1)(1) + (2)(2) + (5)(3) + (6)(4)
=4 + 0 + 0 + 1 + 4 + 15 + 24
=48.

$$\sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{7} x_i^2$$

= $(-4)^2 + (-2)^2 + 0^2 + 1^2 + 2^2 + 5^2 + 6^2$
= $16 + 4 + 0 + 1 + 4 + 25 + 36$
= $86.$

Hence

$$m = \frac{n\left(\sum_{i=1}^{n} x_i y_i\right) - \left(\sum_{i=1}^{n} x_i\right)\left(\sum_{i=1}^{n} y_i\right)}{n\left(\sum_{i=1}^{n} x_i^2\right) - \left(\sum_{i=1}^{n} x_i\right)^2}$$
$$= \frac{7(48) - (8)(9)}{7(86) - 8^2}$$
$$= \frac{264}{538}$$
$$= \frac{132}{269}$$
$$\simeq 0.491,$$

and

$$c = \overline{y} - m\overline{x} = \frac{\sum_{i=1}^{7} y_i}{7} - m\frac{\sum_{i=1}^{7} x_i}{7} = \frac{9}{7} - \frac{132}{269} \times \frac{8}{7} = \frac{195}{269} \simeq 0.725$$

Thus the line of best fit is $y = \frac{132}{269}x + \frac{195}{269}$. The points and the graph are shown in Figure 5.

Figure 5: The Line of Best Fit and Points For Question 8(ii).

[12]